Tetracoordinate Planar Nonmetals

M_4H_4X : Hydrometals (M = Cu, Ni) Containing Tetracoordinate Planar Nonmetals (X = B, C, N, O)**

Si-Dian Li,* Guang-Ming Ren, Chang-Qing Miao, and Zhi-Hao Jin

Tetracoordinate planar carbon (that is, carbon atoms coordinated by four other atoms in a square-planar arrangement), first proposed by Hoffmann et al.^[1] over thirty years ago, was recently observed in the vibrationally averaged D_{4h} [Al₄C]⁻,^[2] $C_{2\nu}$ Al₃XC, [Al₃XC]⁻ (X = Si, Ge),^[3,4] and [CAl₄]²⁻.^[5] Tetracoordinate planar (TP) Si and Ge centers were also discovered in MAl₄ and [MAl₄]⁻.^[6] The TP bonding character of Group 14 elements, contrary to the conventional concept of tetrahedral C, Si, and Ge, is supported by excellent agreements between the measured photoelectron spectra and ab initio vertical detachment energies (VDE) of these molecules in the TP structures.

Here we extend the range of TP centers to include B, N, and O and the ligands from p-block elements to d-block

[*] Prof. S.-D. Li, Dr. G.-M. Ren, C.-Q. Miao Institute of Materials Sciences and Department of Chemistry Xinzhou Teachers' University Xinzhou 034000, Shanxi (P. R. China) Fax: (+86) 350-303-1845 E-mail: lisidian@yahoo.com Prof. Z.-H. Jin School of Materials Science and Engineering Xian Jiaotong University Xian 710049 (P. R. China)

[**] This work was financially supported by The Shanxi Natural Science Foundation. We are grateful to Dr. Hai-Jun Jiao and Hai-Shun Wu for inspiring discussions.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

transition metals (Cu and Ni). On the basis of ab initio optimization results, we present the first theoretical evidence that, in the form of the X-centered hydrometals M_4H_4X , these first-row nonmetals X (X = B, C, N, O) are tetracoordinated by four transition-metal ligands M (M = Cu, Ni) in perfect squares. Hydrocopper Cu_4H_4 and hydronickel Ni_4H_4 are found to be suitable for hosting these tetracoordinate planar nonmetals (TPNs) with the high symmetry of D_{4h} . To the best of our knowledge, neither experimental nor theoretical data on these unusual molecules are available to date. Our work was stimulated by the proposal of aromatic hydrocopper Cu_4H_4 at the DFT level. [7]

Various initial structures obtained at the B3LYP/Lanl2dz level were optimized at the B3LYP/6-311 + G(3df,p) level, and imaginary frequencies were checked at the same level. The DFT binding energies of 23.1 eV for D_{4h} Ni₄H₄C and 18.7 eV for $C_{4\nu}$ Cu₄H₄C demonstrate the stability of these complexes with respect to dissociation. The B3LYP geometries were further refined with the second-order Møller-Plesset (MP2) procedure. We calculated the NMR shielding tensors using the gauge-independent atomic orbital (GIAO) procedure^[8,9] at the B3LYP/6-311+G(3df,p) level, and VDEs, ionization potentials (IPs), and electron affinities (EAs) utilizing the restricted outer valence Green function method (ROVGF)^[10,11] with a smaller basis of 6-31 + G(d,p). The optimized MP2 bond parameters, normal vibrational frequencies, and electronic properties of these systems are provided in the Supporting Information. All the calculations were performed with the Gaussian 03 program. [12]

The optimized structures and corresponding HOMOs of the Cu₄H₄X series at the B3LYP level are depicted and compared with that of Cu₄H₄ in Figure 1a. The MP2 bond lengths were found to be about 5% shorter than the corresponding B3LYP values. Both [Cu₄H₄N]⁺ and $[Cu_4H_4O]^{2+}$ have D_{4h} minima with TP N and TP O at the centers of the molecules. Their pyramidal $(C_{4\nu})$ and butterfly (D_{2d}) isomers are converted to the D_{4h} minima automatically during structural optimization, and other structures are either much higher in energy or high-order stationary points. Planar D_{4h} [Cu₄H₄B]⁻ and Cu₄H₄C, on the other hand, were found to be transition states with imaginary frequencies of 266i and 135i cm⁻¹, respectively, and lie 0.962 and 0.124 eV higher in energy than the corresponding tetracoordinate pyramidal $C_{4\nu}$ structures. These imaginary frequencies correspond to the A_{2u} vibrational mode, in which the central atom X moves up and down along the fourfold axis. Distortion of the D_{4h} structure in the A_{2u} mode leads to the C_{4v} global minimum, in which the X atom lies about 0.5 Å above the Cu₄ plane. Note that the HOMOs of both D_{4h} [Cu₄H₄N]⁺ and [Cu₄H₄O]²⁺ feature delocalized cyclic σ bonds along the -Cu-H-Cu- peripheries. This characteristic bond plays a critical role in stabilizing the D_{4h} structures of $[Cu_4H_4N]^+$ and $[Cu_4H_4O]^{2+}$, and it is clearly inherited in the pyramidal $C_{4\nu}$ ground states of both [Cu₄H₄B]⁻ and Cu₄H₄C, in which the nearly pure lone pair of 2p_z electrons of the central atom (discussed in detail below) overlaps partially with the cyclic σ bond. However, a cyclic σ HOMO does not exist in the D_{4h} transition states of Cu_4H_4C and [Cu₄H₄B]⁻, which have Cu-H separations greater than 1.700 Å. Instead of forming delocalized cyclic σ bonds, both

Zuschriften

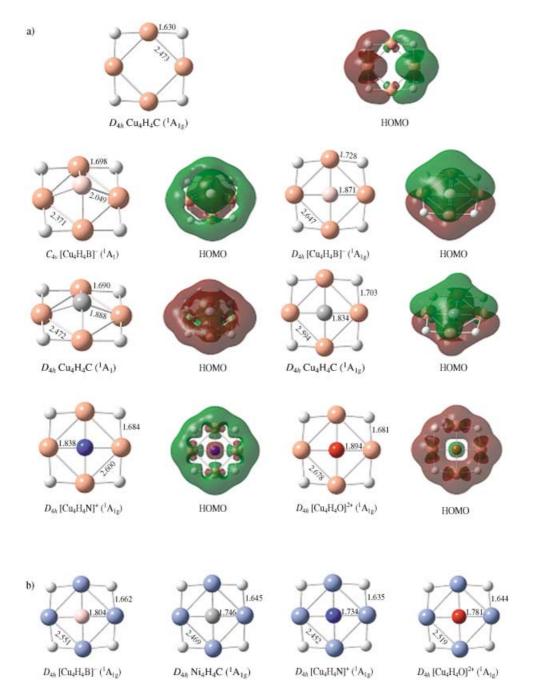


Figure 1. a) Optimized structures of the Cu_4H_4X series and their corresponding HOMOs, compared with those of hydrocopper Cu_4H_4 ; b) optimum structures of D_{4h} Ni_4H_4X (X = B, C, N, O) at the B3LYP/6-311 + G(3df,p) level.

planar D_{4h} Cu₄H₄C and [Cu₄H₄B]⁻ feature delocalized π HOMOs composed purely of contributions from the four Cu ligands and X center. This π interaction is not strong enough to prevent the D_{4h} planar structure from being distorted along the A_{2u} mode.

Natural bond orbital (NBO) analyses indicate that, in both D_{4h} and $C_{4\nu}$ ground states, there is considerable electron transfer from the Cu ligands to the more electronegative center X, and the interactions between them exhibit clear ionic characteristics. For example, D_{4h} [Cu₄H₄N]⁺ has atomic charges of Cu +1.00, N -1.62, and H -0.34 |e| and the atomic charges of $C_{4\nu}$ Cu₄H₄C are Cu +0.87, C -1.83, and

H -0.41 | e|. In the transition states of D_{4h} [Cu₄H₄B]⁻ and Cu₄H₄C, B and C carry even higher negative charges of -2.57 and -2.06 | e| respectively. More detailed analysis shows that the central atoms X have three sp² hybrids and a nearly pure lone pair of $2p_z$ electrons perpendicular to the Cu₄ plane. For instance, the N atom in D_{4h} [Cu₄H₄N]⁺ has the electron configuration [He]2s^{1.95}2p_x^{1.32}2p_y^{1.32}2p_z^{1.85}, and C in $C_{4\nu}$ Cu₄H₄C has [He]2s^{1.92}2p_x^{0.92}2p_y^{0.92}2p_z^{1.85}, with both $2p_z$ atomic orbitals nearly fully filled. This observation is in line with Hoffmann's proposal^[1] that the TP C in planar CH₄ has a pure lone pair of $2p_z$ electrons and there is considerable electron transfer from ligands H to central atom C.

The coordination chemistry of X-centered hydronickel Ni_4H_4X is simpler. All the first-row nonmetals X = B, C, N, and O can be nicely fitted at the center of hydronickel Ni₄H₄ to form TPN centers (Figure 1b), and all these D_{4h} structures were confirmed to be true minima with no imaginary frequency. The NBO occupancy analyses indicate that, compared to Cu-X interactions, Ni-X bonds exhibit more covalent characteristics, except for Ni-O. This bonding feature is also supported by the observation that the nonmetal centers in D_{4h} Ni₄H₄X have much smaller negative charges than those in Cu_4H_4X . For example, the N center in D_{4h} $[Ni_4H_4N]^+$ carries a negative charge of -0.79 |e|, about half the corresponding value of -1.62 |e| in D_{4h} [Cu₄H₄N]⁺. In D_{4h} Ni₄H₄C, which represents the first TP carbon atom at the center of a perfect square of transition-metal atoms, Ni, C, and H atoms carry atomic charges of +0.47, -0.55, and -0.33 | e | and have electron configurations Ni[Ar]4s^{0.30}3d^{9.22}, C[He]2s^{1.49}2p^{3.01}, and H 1s^{1.33}, respectively. Here, the C center bears less than one-third of the negative charge of -1.83 | e | it carries in $C_{4\nu}$ Cu_4H_4C . This charge distribution shows that the transfer of valence electrons from Ni to X is much less effective than that from Cu. The reduced charge transfer is partially reflected in the low occupancies of the 2p_x orbitals of the central atoms. For instance, B, C, N, and O centers in D_{4h} Ni₄H₄X systems have the electronic configurations of B[He] $2s^{1.20}2p_x^{~0.84}2p_y^{~0.84}2p_z^{~0.39}$, C[He] $2s^{1.49}2p_x^{~1.16}2p_y^{~1.16}2p_z^{~0.68}$, N[He] $2s^{1.69}2p_x^{~1.48}2p_y^{~1.48}2p_z^{~1.09}$, and O[He] $2s^{1.84}2p_x^{~1.73}2p_y^{~1.73}2p_z^{~1.55}$, respectively. The occupancies of the 2pz orbitals increase quickly with increasing electronegativity of the central atoms. In addition, frequency analysis indicates that the H-bridged planar D_{4h} hydronickel Ni₄H₄ is a second-order transition state with two imaginary frequencies of 163i and 71i cm⁻¹. It is the introduction of an X atom at the center and the formation of four equivalent Ni-X interactions that stabilize the Ni₄H₄ square.

As nonmetal atoms X occupy the centers of heavy-atom squares in D_{4h} M₄H₄X, we checked the variation of relative NMR chemical shifts $\delta_{\rm H}$ of the bridging H atoms in different systems to assess their aromaticity. Relative to the nuclear magnetic shielding tensor of H atoms (31.9 ppm) in T_d $Si(CH_3)_4$ (TMS), $\delta_H = -7.6$ ppm in benzene and -0.4 ppm in hydrocopper Cu₄H₄, with both demonstrating the ringcurrent effect of aromatic systems. The bridging H atoms in the M_4H_4X series, however, have positive δ_H values which show that these H atoms are located at higher field than Si(CH₃)₄ in NMR spectra. In the Cu₄H₄X series, $\delta_{\rm H}$ = +1.4, +1.2, +0.8, and +3.7 ppm for X = B, C, N, and O, respectively. In the Ni₄H₄X systems, the H atoms are shifted to even higher field. For instance, $\delta_H = +5.5$, +4.3, and +3.2 ppm for X = B, C, and N. These results are in line with $\delta_{\rm H}$ = +0.6 ppm for the two bridging H atoms in D_{2h} B₂H₆. The upfield NMR chemical shifts of bridging H atoms outside the M4 squares show that, unlike aromatic benzene and hydrocopper, [7] M₄H₄X systems are nonaromatic. Introducing an X atom at the molecular center breaks the ring current in Cu₄H₄. These unusually high NMR chemical shifts could help to experimentally identify M₄H₄X molecules frozen in suitable matrices.

The lowest two VDEs of $[Cu_4H_4B]^-$, the first IP and EA of Cu_4H_4C , and first EAs of $[Cu_4H_4N]^+$ and $[Cu_4H_4O]^{2+}$

calculated at the B3LYP and MP2 levels generally agree well and lie within the energy ranges of conventional photoelectron measurements. For instance, $C_{4\nu}$ [Cu₄H₄B]⁻ has the two lowest VDEs of 2.51 and 4.86 eV, while the corresponding values of the D_{4h} transition state are 2.13 and 3.98 eV. For $C_{4\nu}$ Cu₄H₄C, IP = 8.46 and EA = 0.97 eV. Its D_{4h} transition state has IP = 9.40 and EA = 0.38 eV. These values can be used in identifying corresponding species and distinguishing different isomers by gas-phase photoelectron spectroscopy.

In summary, we have presented the first theoretical evidence for TPN atoms hosted at the centers of perfect squares of transition-metal atoms, which parallels the result obtained for TP carbon^[2] hosted at the center of an Al_4^{2-} square.^[13] Latest optimization results indicate that heterocyclic hydrometal systems $Cu_xNi_yH_4$ (x+y=4) with lower symmetries exhibit similar behavior. These predictions await experimental confirmation, which would open a new branch of chemistry of hydrometals with TPN centers that may have important applications as catalysts.

Received: October 13, 2003 [Z53068]

Keywords: ab initio calculations · copper · density functional calculations · electronic structure · nickel

- [1] R. Hoffmann, R. W. Alder, C. F. Wilcox, Jr., J. Am. Chem. Soc. 1970, 92, 4992.
- [2] X. Li, L.-S. Wang, A. I. Boldyrev, J. Simons, J. Am. Chem. Soc. 1999, 121, 6033.
- [3] L. S. Wang, A. I. Boldyrev, X. Li, J. Simons, J. Am. Chem. Soc. 2000, 122, 7681.
- [4] X. Li, H.-J. Zhai, L.-S. Wang, Chem. Phys. Lett. 2002, 357, 415.
- [5] X. Li, H.-F. Zhang, L.-S. Wang, G. D. Geske, A. I. Boldyrev, Angew. Chem. 2000, 112, 3776; Angew. Chem. Int. Ed. 2000, 39, 3630.
- [6] A. I. Boldyrev, X. Li, L.-S. Wang, Angew. Chem. 2000, 112, 3445; Angew. Chem. Int. Ed. 2000, 39, 3307.
- [7] A. C. Tsipis, C. A. Tsipis, J. Am. Chem. Soc. 2003, 125, 1136.
- [8] R. Ditchfield, Mol. Phys. 1974, 27, 789 K. Wolinski, J. F. Hilton,
 P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251.
- [9] S.-D. Li, H.-L. Yu, H.-S. Wu, Z.-H. Jin, J. Chem. Phys. 2002, 117, 9543.
- [10] W. von Niessen, J. Schirmer, L. S. Cederbaum, Comput. Phys. Rep. 1984, 1, 57.
- [11] V. G. Zakrzewski, J. V. Ortiz, J. A. Nichols, D. Heryadi, D. L. Yeager, J. T. Golab, Int. J. Quantum Chem. 1996, 60, 29.
- [12] Gaussian 03, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 2003.
- [13] X. Li, A. E. Kuznetsov, H.-F. Zhang, A. I. Boldyrev, L.-S. Wang, Science 2001, 291, 859.